Алгебра и начала анализа — аннотация к рабочим программам (базовый уровень)

Программы разработаны на основе Федерального компонента государственного стандарта среднего (полного) общего образования, утвержденного приказом Министерства образования Российской Федерации от 05.03.2004 № 1089 «Об утверждении федерального компонента государственных стандартов начального общего, основного общего и среднего (полного) общего образования, Авторской программы: Алгебра и начала математического анализа. 10 – 11 классы (базовый уровень) / авт.- сост. Ш.А.Алимов, Ю.М.Колягин, М.В.Ткачёва. М.: Просвещение

УЧЕБНО-МЕТОДИЧЕСКИЙ КОМПЛЕКС (УМК):

Ш.А. Алимов, Ю.М.Колягин и др. «Алгебра и начала анализа» учебник для 10-11 классов общеобразовательных учреждений. М.: Просвещение

УЧЕБНЫЙ ПЛАН (количество часов):

10 класс – 3 часа в неделю, 102 часа в год.

ЦЕЛИ:

  • формирование представлений об идеях и методах математики; о математике как универсальном языке науки, средстве моделирования явлений и процессов;
  • овладение  устным и письменным математическим языком, математическими знаниями и умениями, необходимыми для изучения  школьных  естественно — научных дисциплин,  для продолжения образования и освоения избранной специальности на современном уровне;
  • развитие логического мышления, алгоритмической культуры,  пространственного воображения, развитие математического мышления и интуиции,  творческих способностей на уровне, необходимом для продолжения образования и  для самостоятельной  деятельности в области математики и ее приложений  в будущей профессиональной деятельности;
  • воспитание средствами математики культуры личности:  знакомство с историей развития математики, эволюцией математических идей, понимание значимости математики для общественного прогресса.

ЗАДАЧИ:

  • формирование умений и навыков решения задач базового уровня по готовым чертежам с сопровождением краткого решения;
  • формирование умения применять полученные знания для решения практико-ориентированных задач;
  • формирование умения логически обосновывать выводы, проводить доказательства.

Программы обеспечивают достижение выпускниками средней школы определённых личностных, метапредметных и предметных  результатов.

ЛИЧНОСТНЫЕ РЕЗУЛЬТАТЫ

  • Умение ясно, точно, грамотно излагать свои мысли в устной и письменной форме, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры.
  • Критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта.
  • Представление о математической науке как сфере человеческой деятельности, об этапах ее развития, о ее значимости для развития цивилизации.
  • Креативность мышления, инициатива, находчивость, активность при решении математических задач.
  • Умение контролировать процесс и результат учебной математической деятельности.
  • Способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений.

МЕТАПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

  • Умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни.
  • Умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять ее в понятной форме, принимать решение в условиях неполной и избыточной, точной и вероятностной информации.
  • Умение понимать и использовать математические средства наглядности (графики, диаграммы, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации.
  • Умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки.
  • Умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач.
  • Понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом.
  • Умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем.
  • Умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера.
  • Первоначальные представления об идеях и методах математики как универсальном языке науки и техники, средстве моделирования явлений и процессов.

ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

Предметная область «Арифметика»

  • переходить от одной формы записи чисел к другой, представлять десятичную дробь в виде обыкновенной и обыкновенную – в виде десятичной, записывать большие и малые числа с использованием целых степеней десятки;
  • выполнять арифметические действия с рациональными числами, сравнивать рациональные и действительные числа, находить в несложных случаях значения степеней с целыми показателями, находить значения числовых выражений;
  • округлять целые числа и десятичные дроби, находить приближения чисел с недостатком и избытком, выполнять оценку числовых выражений;
  • пользоваться основными единицами длины, массы, времени, скорости, площади, объема, выражать более крупные единицы через более мелкие и наоборот;
  • решать текстовые задачи, включая задачи, связанные с отношением и пропорциональностью величин, с дробями и процентами.

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • решения несложных практических расчетных задач, в том числе c использованием (при необходимости) справочных материалов, калькулятора, компьютера;
  • устной прикидки и оценки результата вычислений, проверки результата вычисления с использованием различных приемов;
  • интерпретации результатов решения задач с учетом ограничений, связанных с реальными свойствами рассматриваемых процессов и явлений.

Предметная область «Алгебра»

  • составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое, выражать в формулах одну переменную через остальные;
  • выполнять: основные действия со степенями с целыми показателями, с многочленами и с алгебраическими дробями; разложение многочленов на множители; тождественные преобразования рациональных выражений;
  • решать линейные уравнения, системы двух линейных уравнений с двумя переменными;
  • решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений исходя из формулировки задачи;
  • изображать числа точками на координатной прямой;
  • определять координаты точки плоскости, строить точки с заданными координатами.

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • выполнения расчетов по формулам, составления формул, выражающих зависимости между реальными величинами, нахождения нужной формулы в справочных материалах;
  • моделирования практических ситуаций и исследования построенных моделей с использованием аппарата алгебры;
  • описания зависимостей между физическими величинами соответствующими формулами при исследовании несложных практических ситуаций.

Предметная область «Элементы логики, комбинаторики, статистики и теории вероятностей»

  • проводить несложные доказательства, получать простейшие следствия из известных или ранее полученных утверждений, оценивать логическую правильность рассуждений, использовать примеры для иллюстрации и контрпримеры для опровержения утверждений;
  • извлекать информацию, представленную в таблицах, на диаграммах, графиках, составлять таблицы, строить диаграммы и графики;
  • решать комбинаторные задачи путем систематического перебора возможных вариантов и с использованием правила умножения;
  • вычислять средние значения результатов измерений;
  • находить частоту события, используя собственные наблюдения и готовые статистические данные;
  • находить вероятности случайных событий в простейших случаях.

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • выстраивания аргументации при доказательстве и в диалоге;
  • распознавания логически некорректных рассуждений;
  • записи математических утверждений, доказательств;
  • анализа реальных числовых данных, представленных в виде диаграмм, графиков, таблиц;
  • решения практических задач в повседневной и профессиональной деятельности с использованием действий с числами, процентов, длин, площадей, объемов, времени, скорости;
  • решения учебных и практических задач, требующих систематического перебора вариантов;
  • сравнения шансов наступления случайных событий, оценки вероятности случайного события в практических ситуациях, сопоставления модели с реальной ситуацией;
  • понимания статистических утверждений.

В результате изучения математики на базовом уровне в старшей школе  ученик должен

Знать:

  • значение математической науки для решения задач, возникающих в теории и практике; широту и ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;
  • значение практики и вопросов, возникающих в самой математике, для формирования и развития математической науки;
  • идеи расширения числовых множеств как способа построения нового математического аппарата для решения практических задач и внутренних задач математики;
  • значение идей, методов и результатов алгебры и математического анализа для построения моделей реальных процессов и ситуаций;
  • возможности геометрического языка как средства описания свойств реальных предметов и их взаимного расположения;
  • универсальный характер законов логики математических рассуждений, их применимость в различных областях человеческой деятельности;
  • различие требований, предъявляемых к доказательствам в математике, естественных, социально-экономических и гуманитарных науках, на практике;
  • роль аксиоматики в математике; возможность построения математических теорий на аксиоматической основе; значение аксиоматики для других областей знания и для практики;
  • вероятностных характер различных процессов и закономерностей окружающего мира.

Числовые и буквенные выражения

Уметь:

  • выполнять арифметические действия, сочетая устные и письменные приемы, применение вычислительных устройств; находить значения корня натуральной степени, степени с рациональным показателем, логарифма, используя при необходимости  вычислительные устройства; пользоваться оценкой и прикидкой при практических расчетах;
  • применять понятия, связанные с делимостью целых чисел, при решении математических задач;
  • находить корни многочленов с одной переменной, раскладывать многочлены на множители;
  • выполнять действия с комплексными числами, пользоваться геометрической интерпретацией комплексных чисел,  в простейших случаях находить комплексные корни уравнений с действительными коэффициентами;
  • проводить преобразования числовых и буквенных выражений, включающих степени, радикалы, логарифмы и тригонометрические функции.

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для

практических расчетов по формулам, включая формулы, содержащие степени, радикалы, логарифмы и тригонометрические функции, при необходимости используя справочные материалы и простейшие вычислительные устройства.

Функции и графики

Уметь

  • определять значение функции по значению аргумента при различных способах задания функции;
  • строить графики изученных функций, выполнять преобразования графиков;
  • описывать по графику и по формуле поведение и свойства  функций;
  • решать уравнения, системы уравнений, неравенства, используя свойства функций и их графические представления.

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для

описания и исследования с помощью функций реальных зависимостей, представления их графически; интерпретации графиков реальных процессов.

Начала математического анализа

Уметь

  • находить сумму бесконечно убывающей геометрической прогрессии;
  • вычислять производные и первообразные элементарных функций, применяя правила вычисления производных и первообразных, используя справочные материалы;  
  • исследовать функции и строить их графики с помощью производной;
  • решать задачи с применением  уравнения касательной к графику функции;
  • решать задачи на нахождение наибольшего  и наименьшего значения функции на отрезке;
  • вычислять площадь криволинейной трапеции.

    Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для

решения геометрических, физических, экономических и других прикладных задач, в том числе задач на наибольшие и наименьшие значения с применением аппарата математического анализа.

Уравнения и неравенства

Уметь

  • решать рациональные, показательные и логарифмические уравнения и неравенства, иррациональные и тригонометрические уравнения, их системы;
  • доказывать несложные неравенства;
  • решать текстовые задачи с помощью  составления уравнений, и неравенств, интерпретируя результат с учетом ограничений условия задачи;
  • изображать на координатной плоскости множества решений уравнений и неравенств с двумя переменными и их систем;
  • находить приближенные решения уравнений и их систем, используя графический метод;
  • решать уравнения, неравенства и системы с применением  графических представлений, свойств функций, производной.

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для

построения и исследования простейших математических моделей.

Элементы комбинаторики, статистики и теории вероятностей

Уметь:

  • решать простейшие комбинаторные задачи методом перебора, а также с  использованием известных формул, треугольника Паскаля; вычислять коэффициенты  бинома Ньютона по формуле и с использованием  треугольника Паскаля;
  • вычислять, в простейших случаях, вероятности событий на основе подсчета числа исходов.

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для

анализа реальных числовых данных, представленных в виде диаграмм, графиков; для  анализа информации статистического характера.

Общеучебные умения, навыки и способы деятельности

  • В ходе изучения математики в базовом курсе старшей школы учащиеся продолжают овладение разнообразными способами деятельности, приобретают и совершенствуют опыт:
  • проведения доказательных рассуждений, логического обоснования выводов, использования различных языков математики для иллюстрации, интерпретации, аргументации и доказательства;
  • решения широкого класса задач из различных разделов курса, поисковой и творческой деятельности при решении задач повышенной сложности и нетиповых задач;
  • планирования и осуществления алгоритмической деятельности: выполнения и самостоятельного составления алгоритмических предписаний и инструкций на математическом материале;
  • использования и самостоятельного составления формул на основе обобщения частных случаев и результатов эксперимента; выполнения расчетов практического характера;
  • построения и исследования математических моделей для описания и решения прикладных задач, задач из смежных дисциплин и реальной жизни; проверки и оценки результатов своей  работы, соотнесения их с поставленной задачей, с личным жизненным опытом;
  • самостоятельной работы с источниками информации, анализа, обобщения и систематизации полученной информации, интегрирования ее в личный опыт;
  • возможности геометрического языка как средства описания свойств реальных предметов и их взаимного расположения.

СОДЕРЖАНИЕ

10 класс

  • Действительные числа – 11 ч
  • Степенная функция – 10 ч
  • Показательная функция – 10 ч
  • Логарифмическая функция – 14 ч
  • Тригонометрические формулы – 24 ч
  • Тригонометрические уравнения – 18 ч
  • Повторение – 15 ч

ФОРМЫ ТЕКУЩЕГО КОНТРОЛЯ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

  • Формы контроля: фронтальный опрос, индивидуальная работа у доски, индивидуальная работа по карточкам, самостоятельная работа, проверочная работа, математический диктант, тестовая работа.
  • Промежуточная аттестация проводится в форме тестов, контрольных, самостоятельных работ.
  • Итоговая аттестация предусмотрена в виде итоговой контрольной работы. Итогом выявления результатов знаний по изученной теме являются – контрольные работы, которые составляется с учетом обязательных результатов обучения.
  • Промежуточная аттестация проводится в форме математических диктантов, контрольных и самостоятельных работ.

Виды контроля знаний и умений:

  • Предварительный (диагностический): проводят в начале учебного года, полугодия, четверти, на первых уроках нового раздела или темы учебного курса. Его функциональное назначение состоит в том, чтобы изучить уровень готовности учащихся к восприятию нового материала. На основе данных диагностического контроля учитель планирует изучение нового материала, предусматривает сопутствующее повторение, прорабатывает внутри- и межтемные связи, актуализирует знания, которые ранее не были востребованы.
  • Текущий: самая оперативная, динамичная и гибкая проверка результатов обучения. Текущий контроль сопровождает процесс формирования новых знаний и умений, когда еще рано говорить об их сформированности. Основная цель этого контроля – провести анализ хода формирования знаний и умений. Это дает возможность учителю своевременно выявить недостатки, установить их причины и подготовить материалы, позволяющие  устранить недостатки, исправить ошибки, усвоить правила, научиться выполнять нужные операции и действия  (самостоятельная работа, проверочная работа, математический диктант, тест, опрос).
  • Тематический: проводится после изучения какой-либо темы или двух небольших тем, связанных между собой линейными связями. Тематический контроль начинается на повторительно-обобщающих уроках. Его цель – обобщение и систематизация учебного материала всей темы.
    Организуя повторение и проверку знаний и умений на таких уроках, учитель предупреждает забывание материала, закрепляет его как базу, необходимую для изучения последующих разделов учебного предмета.
  • Задания для контрольной работы рассчитаны на выявление знаний всей темы, на установление связей внутри темы и с предыдущими темами курса, на умение переносить знания на другой материал, на поиск выводов обобщающего характера: зачет, контрольная работа.
    Итоговый: призван констатировать наличие и оценить результаты обучения за достаточно большой промежуток учебного времени – полугодие, год или ступень обучения (государственная итоговая аттестация, ЕГЭ).